Information theoretic Inequalities prover
Last winter along with my colleagues Etienne Perron and Professor Suhas Diggavi, we have developed a tool suit to prove inequalities in information theory. The tool is adapted from the previous work of Raymond Yeung and Ying-On Yan at Cornell. We have made it a complete C based software and removed the matlab dependency in the back end. There is also a pre-parser (using lex and yacc) built in to have flexibility on choosing random variable names. More importantly, a graphical front end is developed (using Gtk), which works well across the platform. Even though the beta version was ready in late 2007, for many reasons, including exhaustive testing (we always find scope for improvement) it was delayed. Last month, we finally made an official release. The original xitip project page in IPG has a short description and pointer to the exclusive Xitip page in EPFL (http://xitip.epfl.ch). A lot of things still need to be done, before we could say it is satisfactory. One of the main thing pending is the user guide and some kind of exemplified documentation. There is a technical report, I have prepared, but that is a bit too technical at the moment. Of course Raymond yeung's amazing papers introducing the theoretical idea behind this prover and his book are valuable resources. I have tried to provide a little more easy understanding of the concept using some illustration and toy examples. I hope to put this report anyway in the EPFL repository sometime.
The software is open source. If you are not bothered to compile and make an executable yourself, then please download the binary executable and just run. It is just a matter of double click in the latter case. We have Linux, Windows, Windows(Cygwin) and Mac versions available. There are two different linear programming software used. One is a Gnu open source GLPK and the other one is Qsopt (developed at Gatech). The Qsopt version is faster than the GLPK. Just in case you are obsessed with a perfect open source model, you could avail the GLPK [5] version.
Hopefully during this summer we will get to complete the pending work on this project. If any of you happen to find it interesting please don't forget to update us, on what you though about the software (Comments can be good, bad and ugly!).
Aside, I better mention this: Xitip is a software useful for proving (verifying) Information theoretic inequalities [7] only. Such inequalities contain expressions involving measures such as entropy, mutual information etc. It is a pretty handy tool if you are trying to prove some limiting bounds in information theory. In reality, there is broad classification of Shannon type and non-Shannon type inequalities. Non-Shannon type inequalities are not many, but they exist. Xitip at the moment is equipped to solve only the Shannon type inequalities. You can expect more information on this at the Xitip home page [2]
[1]http://ipg.epfl.ch/doku.php?id=en:research:xitip
[2]http://xitip.epfl.ch
[3]http://www2.isye.gatech.edu/~wcook/qsopt/
[4]http://user-www.ie.cuhk.edu.hk/~ITIP/
[5]http://www.gnu.org/software/glpk/
[6]http://en.wikipedia.org/wiki/Information_theory
[7]http://en.wikipedia.org/wiki/Inequalities_in_information_theory
The software is open source. If you are not bothered to compile and make an executable yourself, then please download the binary executable and just run. It is just a matter of double click in the latter case. We have Linux, Windows, Windows(Cygwin) and Mac versions available. There are two different linear programming software used. One is a Gnu open source GLPK and the other one is Qsopt (developed at Gatech). The Qsopt version is faster than the GLPK. Just in case you are obsessed with a perfect open source model, you could avail the GLPK [5] version.
Hopefully during this summer we will get to complete the pending work on this project. If any of you happen to find it interesting please don't forget to update us, on what you though about the software (Comments can be good, bad and ugly!).
Aside, I better mention this: Xitip is a software useful for proving (verifying) Information theoretic inequalities [7] only. Such inequalities contain expressions involving measures such as entropy, mutual information etc. It is a pretty handy tool if you are trying to prove some limiting bounds in information theory. In reality, there is broad classification of Shannon type and non-Shannon type inequalities. Non-Shannon type inequalities are not many, but they exist. Xitip at the moment is equipped to solve only the Shannon type inequalities. You can expect more information on this at the Xitip home page [2]
[1]http://ipg.epfl.ch/doku.php?id=en:research:xitip
[2]http://xitip.epfl.ch
[3]http://www2.isye.gatech.edu/~wcook/qsopt/
[4]http://user-www.ie.cuhk.edu.hk/~ITIP/
[5]http://www.gnu.org/software/glpk/
[6]http://en.wikipedia.org/wiki/Information_theory
[7]http://en.wikipedia.org/wiki/Inequalities_in_information_theory
0 Comments:
Post a Comment
<< Home